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1 Co-H-Spaces

For this exercise sheet we will return to the pointed category. In particular all spaces, maps
and homotopies will be based. We will introduce co-H-spaces and study their basic properties.
These spaces are dual to the so-called H-spaces which were originally defined by Serre [3]
to be the homotopical analogues of topological groups. You are asked to complete all three
exercises in section 2 and three of the exercises in section 3.

Definition 1 A co-H-Space is a pair (X, c) consisting of a pointed space X and a map
c : X → X ∨X which makes the next diagram commute up to homotopy

X ∨X� _

��
X

∆
//

c

;;vvvvvvvvvv
X ×X

(1.1)

where ∆ : x 7→ (x, x) is the diagonal. �

The map c is called a comultiplication. Note that it is an important part of the co-H-
structure, and although we will normally denote a co-H-space simply as X, the particular
choice of comultiplication must be remembered: the same space may admit many non-
equivalent comultiplications. Notice, however, that the condition for c to be a comultiplica-
tion depends only on its homotopy class.

Exercise 1.1 Show that the map c : S1 → S1 ∨ S1 defined in equation (2.2) of The Funda-
mental Group is a comultiplication. �
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Exercise 1.2 Let X be a space. Show that if (Y, c) is a co-H-space, then X ∧ Y is a
co-H-space. Conclude that the suspension ΣX is a co-H-space. Explicitly write down a
comultiplication for it. �

We call the comultiplication constructed here the suspension comultiplication on ΣX.
The exercise shows that we have already encountered many co-H-spaces. In particular all
spheres Sn for n ≥ 1 are co-H-spaces. On the other hand, not all co-H-spaces are suspensions.
Moreover, there are suspensions which admit comultiplications which are not homotopic to
the suspension comultiplication. These examples are rather subtle, however, and we will
need to develop some powerful tools to be able to understand them.

Example 1.1 The wedge inclusions induce an isomorphism H̃∗(X ∨ X) ∼= H̃∗X ⊕ H̃∗X.
The inverse is induced by the pinch maps q1, q2 : X ∨ X → X. In particular, if c is a
comultiplication on X, then

H̃∗X ⊕ H̃∗X

∼=

q∗1⊕q∗2

wwnnn
nnn

nnn
nnn +

&&MM
MMM

MMM
MMM

M

H̃∗(X ∨X) c∗ // H̃∗X

(1.2)

commutes. �

Where does the Definition 1 come from? Well, a topological magma is a pair of a space
G and a map m : G×G→ G which makes the following triangle commute strictly

G ∨G_�

��

∇

##H
HH

HH
HH

HH

G×G m
// G.

(1.3)

The map m describes a product, and the diagram is the requirement that the basepoint of
G be a strict unit for it. If we ask only for the diagram to commute up to homotopy we
come to the definition of an H-space. Thus these objects are direct generalisations of familiar
objects such as topological groups and Lie groups.

We get from here to Definition 1 simply by reversing all the arrows in (1.3). Categorically
this is sensible, since diagrammatically it is no more difficult to ask for the existence of a
comagma than for a magma. However, the notion of a co-H-space is something new to the
homotopy category. As it turns out, there is no interesting analogue for these objects in
Top∗.

Exercise 1.3 Replace the requirement that the square (1.1) commute up to homotopy by
asking instead that it commute strictly. Show that there is only a single space satisfying this
new definition. �

Fix a co-H-space (X, c). For any space Y and maps f, g : X → Y define f + g : X → Y
to be the composite

f + g : X
c−→ X ∨X f∨g−−→ Y ∨ Y ∇−→ Y. (1.4)
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Exercise 1.4 Show that the homotopy class of f + g depends only on the homotopy classes
of the maps f, g. Conclude that for any space Y there is a pairing

[X, Y ]× [X, Y ]→ [X, Y ] (1.5)

which turns the homotopy set [X, Y ] into a magma1. What is the unit? Is the product
associative? Show that if α : Y → Y ′ is a pointed map, then the induced map

α∗ : [X, Y ]→ [X, Y ′], f 7→ α ◦ f (1.6)

is a morphism of unital magmas. �

Example 1.2 Using the observations in example 1.3 we see easily that as maps H̃∗Y →
H̃∗X the relation

(f + g)∗ = f ∗ + g∗. (1.7)

holds. �

The exercise demonstrates one of the main reasons why co-H-spaces are useful to us. It
is generally very difficult to compute homotopy sets, and any kind of structure on them is
very useful. Of course, it would be desirable to refine this structure if possible.

Definition 2 Let (X, c) be a co-H-space. Then X is said to be coassociative if the follow-
ing diagram commutes up to homotopy

X
c //

c

��

X ∨X
1∨c
��

X ∨X c∨1 // X ∨X ∨X.

(1.8)

The co-H-space X is said to be cocommutative if the following diagram commutes up to
homotopy

X
c

##H
HH

HH
HH

HH
c

{{vvv
vv
vv
vv

X ∨X T // X ∨X
(1.9)

where T : X ∨X → X ∨X is the twist map which interchanges the factors. �

Definition 3 Let (X, c) be a co-H-space. A homotopy coinverse for X is a map ι : X → X
making both the following diagrams commute up to homotopy

X

∗
##H

HH
HH

HH
HH
c // X ∨X

(1,ι)

��
X

X

∗
##H

HH
HH

HH
HH
c // X ∨X

(ι,1)

��
X.

(1.10)

�
1Some terminology. A magma was defined above in the topological case. It is a set M with a binary

operation (x, y) 7→ x + y. In particular it need not be associative or commutative. A unit is an element
0 ∈ M such that 0 + x = x + 0, ∀x ∈ M . An associative magma is called a semigroup. An associative
magma with unit is called a monoid. A monoid with inverses is a group. A morphism of (unital) magmas
M → N is a map preserving binary operations (and units).
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A coassociative co-H-space with coinverse is said to be grouplike, or is simply called a
cogroup.

Exercise 1.5 Show that if X is a grouplike co-H-space and Y is any space, then [X, Y ] is
a group, and is abelian if X is cocommutative. Conclude that the functor

hTop∗
[X,−]−−−→ Set∗ (1.11)

actually takes values in the category Gro of groups, and in the category Ab of abelian groups
if X is cocommutative. �

Thus if X is a cogroup, then there is a functor GX filling in the dotted arrow below

Gro

forget

��
hTop

[X,−]
//

GX
::u

u
u

u
u

Set∗.

(1.12)

We stress that the lift GX depends on the particular choice of cogroup structure on X and
need not be unique. Potentially there could even be many such functors GX , even for a fixed
cogroup structure on X.

Definition 4 A covariant group operation induced by a space X is a lift hTop∗
GX−→ Gro

as in (1.12) such that for each space Y , the zero map ∗ ∈ GX(Y ) = [X, Y ] is the identity. �

Exercise 1.6 Show that exercise 1.5 has a converse. In detail, show that if a space X

induces a covariant group operation hTop∗
GX−→ Gro, then X is a grouplike co-H-space.

Explicitly write down a homotopy class of comultiplication on X. �

Putting the conclusions of exercises 1.5 and 1.6 together we find that you have proved the
following.

Proposition 1.1 There is a one-to-one correspondence between the set of homotopy classes
of cogroup structures on X and the set of covariant group operations induced by X.

Of course, similar definitions and statements could be formulated for the more general case
of co-H-structures, or for the case of, say, cocommutative cogroup structures. We’ll leave
the reader to spell these details out on their own.

Definition 5 Let (X, cX), (Y, cY ) be co-H-spaces. A map f : X → Y is said to be a co-H-
map if the next diagram commutes up to homotopy

X
f //

cX
��

Y

cY
��

X ∨X f∨f // Y ∨ Y

(1.13)

�

Exercise 1.7 Show that if f : X → X ′ is a co-H-map between grouplike co-H-spaces, then
f ∗ : [X ′, Y ]→ [X, Y ] is a group homomorphism. �

Example 1.3 If f : X → Y is any map, then Σf : ΣX → ΣY is a co-H-map. �
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2 Homotopy Groups

In the lectures I defined the fundamental group π1Y of a space Y . There was mention of
higher homotopy groups πnY for each n ≥ 2, but no definition appeared. It is the purpose
of this section to rectify this. Since the basic idea can be generalised, we will focus on the
more general case of studying homotopy sets of the form [ΣX, Y ].

Exercise 2.1 Show that if X is any space, then the suspension comultiplication on ΣX is
coassociative and has a coinverse ιX : ΣX → ΣX. Write down explicit homotopies to show
that the double suspension Σ2X is cocommutative, and that the relation ιΣX ' ΣιX ' τ
holds, where τ(x ∧ s ∧ t) = x ∧ t ∧ s. �

According to this exercise Sn for n ≥ 2 is a cocommutive cogroup. Thus by the obvious
extension of Proposition 1.1 we see that [Sn, X] is an abelian group for each space X, and
that this structure is covariantly functorial.

Definition 6 For a pointed space X and an integer n ≥ 2 we define its nth homotopy
group to be the set πnX = [Sn, X] given the abelian group structure determined by the
suspension cogroup structure on Sn.

In particular we have functors

hTop∗
πn−→ Ab, n ≥ 2. (2.1)

We will show in a later lecture using the Cellular Approximation Theorem that the covariant
group structures on these functors are unique. In fact we will show that Sn for n ≥ 2 has
a unique co-H-structure. The case n = 1, on the other hand, is distinct. So exactly how
unique is the group structure on π1X?

Exercise 2.2 Using the Seifert-van Kampen Theorem we can show that

π1(S1 ∨ S1) ∼= Z ∗ Z (2.2)

is a free group generated by the two inclusions in1, in2 : S1 ↪→ S1 ∨ S1. Under this isomor-
phism, which elements of this group correspond to comultiplications on S1? Which elements
are associative comultiplications? Are any of these comultiplications cocommutative? Which
element defines π1? �

Exercise 2.3 Show that the functor πn preserves products. That is, if X, Y are spaces,
then there is a group isomorphism

πn(X × Y ) ∼= πnX ⊕ πnY, ∀n ≥ 1. (2.3)

�

Example 2.1 For n ≥ 3 and k ≥ 2 we define the n-dimensional Moore space of degree k to
be the space

P n(k) = Sn−1 ∪k en. (2.4)
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Then P n(k) is a simply connected CW complex which satisfies

H̃rP n(k) ∼=

{
Zk r = n

0 otherwise.
(2.5)

In fact this equation uniquely characterises P n(k) up to homotopy equivalence. That is, any
simply connected CW complex with cohomology groups (2.5) is homotopy equivalent P n(k).

For each n ≥ 3 the Moore space P n(k) is a suspension. If n ≥ 4, then P n(k) is a double
suspension. Thus for a space X, the set

πn(X;Zk) = [P n(k), X], n ≥ 3 (2.6)

is a group we call the nth homotopy group of X with coefficients in Zk. If n ≥ 4 then
πn(X;Zk) is abelian. We think of these groups as a homotopical analogue of homology with
coefficients in Zk.

Although we can define P 2(k) = S1 ∪k e2, this space is not a suspension (assuming
k 6= 0,±1). In fact it carries no comultiplication (see Example 3.3 below for the reason
why). As for larger n, the co-H-structures on P n(k), n ≥ 4 are unique. On the other hand it
is shown in [2] that the number of comultiplications on P 3(k) is in one-to-one correspondence
with the group

Ext(Zk,Zk) ∼= Zk. (2.7)

The paper also addresses the question of which maps Pm(k)→ P n(l) are co-H-maps. �

3 Recognising co-H-spaces

For the idea to be a good homotopical notion we would expect co-H-structures to be to be
stable under homotopy equivalences.

Exercise 3.1 Show that if Y is a co-H-space and f : X → Y is a map with a left homotopy
inverse g : Y → X, then X is a co-H-space. Write down an explicit comultiplication for X.
If Y is coassociative or commutative, then does it follow that X is too? What about if f is
a homotopy equivalence? �

Thus you have proved:

Proposition 3.1 Any space homotopy equivalent to a co-H-space is a co-H-space. Any space
homotopy equivalent to a cogroup is a cogroup.

We have defined co-H-spaces and their morphisms. We could conceivably extend this
to define a subcategory of hTop∗ on the co-H-spaces. By Proposition 3.1 it would even by
closed under isomorphism. In fact it would even have coproducts.

Exercise 3.2 Let X, Y be based spaces. Show that the wedge X ∨ Y is a co-H-space if and
only if both X and Y are co-H-spaces. Show that in this case it is possible to choose co-H-
structures on all spaces such that the inclusions X, Y ↪→ X∨Y and projections X∨Y → X, Y
are all co-H-maps. �
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The presence of a co-H-structure on X has many implications for the structure of X as
a space.

Proposition 3.2 Let X be a CW complex which is a co-H-space. Then π1X is a free group.

Exercise 3.3 The condition that X is a CW complex is not strictly necessary. What we
need to prove the statement is that we are able to apply the Seifert-van Kampen Theorem
to compute

π1(X ∨X) ∼= π1X ∗ π1X (3.1)

which will be true in the case that X is CW. Assume that (3.1) holds and study the homo-
morphism π1X → π1(X ∨ X) induced by the comultiplication on X to prove Proposition
3.2.2 �

Example 3.1 For n ≥ 2, real projective n-space RP n is not a co-H-space. �

Proposition 3.3 Let X be a co-H-space. Then all cup products in H̃∗X are trivial.

Exercise 3.4 Prove Proposition 3.3. �

Example 3.2 For n ≥ 2, complex projective n-space CP n is not a co-H-space. �

We’ll end this be quoting a theorem which is a little harder to prove. You are not required
to prove this.

Proposition 3.4 Let X be a co-H-space and ϕ : Sn → X, n ≥ 1, a co-H-map. Then
X ∪ϕ en+1 is a co-H-space.

Using this proposition we will be able to construct co-H-space which are not suspensions.
For example, there is a co-H-space of the form S3 ∪ϕ e7 [1], where ϕ is an element of order
3 in π6S

3. Of course, before this can be turned into a rigorous example we will have to
understand a little bit about the homotopy groups of spheres, and how to detect co-H-maps.

Example 3.3 The only co-H-maps S1 → S1 are the trivial map, the identity and the degree
−1 map. For suppose the degree n map S1 → S1 were a co-H-map. Then X = S1 ∪n e2

would be a co-H-space. But we can use the Seifert-van Kampen theorem to compute that
π1X ∼= Zn, and this group is not free if n 6= 0,±1. �

Example 3.4 The Hopf map η : S3 → CP 1 ∼= S2 is not a co-H-map. This is because
CP 2 ∼= S2∪η e4, and we have already remarked that CP 2 is not a co-H-space. In fact there is
no non-zero multiple of η which is a co-H-map, but we’ll need to compute π3S

2 to understand
this. �

2Hint: A subgroup of a free group is free.
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